Note

Conformation of some benzoylated aldononitriles and 5-(polybenzoyloxy-alkyl)tetrazoles as determined by their ¹H-n.m.r. spectra*

NORMA B. D'ACCORSO AND INGE M. E. THIELT

Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

(Received August 14th, 1986; accepted for publication, February 9th, 1982)

For the correct interpretation of the ¹³C-n.m.r. spectra of benzoylated acyclic carbohydrate derivatives, it was necessary to know their conformation, which could be assigned by analysis of the ¹H-n.m.r. spectra^{1,2}. Coupling constants of 7.4–10.7 Hz corresponded to *trans*-diaxial vicinal protons, and of 3.0–4.4 Hz to vicinal-gauche protons¹. We present herein some spectra of benzoylated aldononitriles and 5-(polybenzoyloxyalkyl)tetrazoles.

The conformations of 2,3,4,5-tetra-O-benzoyl-D-arabinononitrile³ (1), 2,3,4,5-tetra-O-benzoyl-D-xylononitrile⁴ (2), 2,3,4,5-tetra-O-benzoyl-G-deoxy-L-mannononitrile⁴ (3), 2,3,4,5,6,7-hexa-O-benzoyl-D-glycero-D-galacto-heptononitrile⁵ (4), 2,3,4,5,6,7-hexa-O-benzoyl-D-glycero-D-gulo-heptononitrile⁶ (5), 2,3,4,5,6,7-hexa-O-benzoyl-D-glycero-L-manno-heptononitrile⁶ (6), 5-(1,2,3,4-tetra-O-benzoyl-D-arabino-tetritol-1-yl)tetrazole³ (7), and 5-(1,2,3,4-tetrabenzoyl-5-deoxy-L-mannopentitol-1-yl)tetrazole³ (8) were determined by ¹H-n.m.r. spectroscopy, the spectra being amenable to first-order analysis. The assignments and coupling constants are listed in Tables I and II.

The reference conformation for acyclic carbohydrate derivatives is the extended, planar, zig-zag conformation. Not always the same conformation is observed for the free and the acetylated acyclic derivatives⁷. When the 1,3 interaction between bulky groups was apparent, a 120° rotation is proposed and named as proposed earlier. Frequently, no complete rotation was observed and the participation of several rotamers had to be postulated².

The acetylated acyclic derivatives having an *arabino* or *galacto* configuration were reported in the extended, planar, zig-zag conformation⁸⁻¹⁰, the same as that for some benzoylated derivatives^{1,2}. The same conformation was observed for 1,

^{*}Part of this work has been presented at the XIIIth International Carbohydrate Symposium, Ithaca, August 10-15, 1986.

[†]To whom correspondence should be addressed.

TABLE I

N.M.R. DATA OF PERBENZOYLATED ALDONONITRILES 1-6°

Com- pound	H-2 (J _{2,3})	H-3 (J _{3,4})	H-4 (3 _{4,5})	H-5a (J _{4,5b})	H-5 (J _{5,6})	H-5b (J _{5a,5h})	H-6 (J _{6,7a})	H-7a (J _{6,7b})	H-7b (J _{7a,7b})
1 ^b	6.09 d	6.23 dd	5.98 ddd	4.93 dd		4.61 dd			
	(4.4)	(7.3)	(3.6) ^c	(5.1)		(12.4)			
2^b	6.14 d	6.09 dd	6.16 ddd	4.74 dd		4.67 dd			
	(6.5)	(3.3)	(5.5)°	(5.9)		(11.9)			
3^b	5.99 d	6.20 dd	5.90 dd	(2.7)	5.53 m	(/	1.48 d		
	(5.0)	(2.9)	(6.8)		(6.4)				
4 ^d	5.87 d	6.05 dd	6.11 dd		6.20 dd		5.72 m	4.76 dd	4.37 dd
	(4.1)	(7.9)	(2.1)		(7.9)		(3.5)	(5.4)	(12.4)
5 ^d	6.11 d	6.08 dd	6.11 dd		6.06 dd		5.74 m	4.78 dd	4.42 dd
	(4.4)	(4.0)	(8.3)		(7.5)		(3.4)	(4.9)	(12.4)
6 ^d	5.86 d	6.06 dd	6.09 dd		5.98 dd		5.84 m	4.53 dd	4.39 dd
	(4.3)	(2.0)	(8.0)		(3.3)		(4.6)	(7.2)	(11.8)

^aFor solutions in (²H)chloroform, δ values, J values in Hz. ^bAt 200 MHz. ^c $J_{4,5a}$. ^dAt 300 MHz.

Compound	H-1	H-2	H-3	H-4a	H-4b
	(J _{1,2})	(J _{2,3})	(J _{3,4a})	(J _{3,4b})	(J _{4a,4b})
7	6.94 d	6.46 dd	5.94 ddd	4.83 dd	4.55 dd
	(5.1)	(6.9)	(3.2)	(5.7)	(12.4)
8	6.83 d	6.39 dd	5.94 dd	5.53 dt	1.49 d
	(5.6)	(3.7)	(5.5)	(6.4)	

TABLE II

N.M.R. DATA OF 5-(POLYBENZOYLOXYALKYL)TETRAZOLES 7 AND 8°

but the structurally related tetrazole derivative 7 showed $J_{1,2}$ 5.1 Hz; this indicates a deviation from this conformation which could be attributed to the presence of more than one rotamer at C-1-C-2. An extended, planar, zig-zag conformation was observed for 4.

For the compounds having the *ribo* or *xylo* configuration, 1,3 interactions were deduced from molecular models and have been reported for acetylated⁸⁻¹⁰ and benzoylated^{2,11} derivatives, These 1,3 interactions produced deviations from the expexted ^{1}J value (7-10 Hz) for the extended, planar, zig-zag conformation. Compound 2 showed $J_{2,3}$ 6.5 and $J_{3,4}$ 5.9 Hz, which indicated the presence of rotamers with an important contribution of $_{2}G^{-}$ and $_{3}G^{+}$. Similar observations were reported previously^{2,7}.

Compounds having the *manno* configuration do not show 1,3 interactions and consequently both free and acetylated derivatives exist in the planar, zig-zag conformation^{7,8}. All the benzoylated acyclic derivatives so far reported showed a rotation at the C-2-C-3 linkage^{1,2}. For compound 3, the expected antirelationship of H-2 and H-3 gave a reduced value of $J_{2,3}$ 5.0 Hz, which can be attributed nearly to a gauche relationship. The rotation proposed for C-2-C-3 gives rise, in both cases, to 1,3 interactions. The $_2G^+$ rotation gives an interaction between two benzoyl groups, whereas the $_2G^-$ rotation gives an interaction between the small nitrile and a benzoyl group and is, therefore, preferred. A similar situation obtains for compound 8, but $J_{1,2}$ 5.8 Hz shows that, in addition to the $_1G^-$ rotation, other rotamers are present.

For compound 6, the ${}_2G^-$ rotamer is predominant and the rest of the chain is extended, and for compound 5, the ${}_2G^-$ rotation is present together with an additional ${}_4G^+$ rotation which avoid an interaction between the benzoyl groups at C-3 and C-5.

EXPERIMENTAL

The compounds studied were prepared by methods previously described³⁻⁶.

^eFor solutions in (²H)chloroform, at 200 MHz.

304 NOTE

ACKNOWLEDGMENTS

The authors thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for a fellowship (N. B. D'A), and acknowledge partial financial support from the Universidad de Buenos Aires and CONICET. They are indebted to Dr. Steven Silber and Mr. Vigi Dandapani (Texas A & M University, College Station, USA) for recording the spectra of compounds 1-3, 7, and 8, and to Prof. Dr. W. Neumann, Prof. Dr. T. N. Mitchell, and Mr. M. A. Ardjmandian (Universität Dortmund, West Germany) for recording the spectra of compounds 4-6. They thank Prof. Dr. J. O. Deferrari for samples of compounds 4-6.

REFERENCES

- I. M. VAZQUEZ, N. B. D'ACCORSO, I. M. E. THIEL, AND A. M. SCHÜLLER, An. Asoc. Quim. Argent., 72 (1984) 583-589.
- 2 N. B. D'ACCORSO AND I. M. E. THIEL, Rev. Latinoam. Quim., 17 (1986) 36-39.
- 3 O. G. MARZOA, J. O. DEFERRARI AND I. M. E. THIEL, Carbohydr. Res., 73 (1979) 323-326.
- 4 E. R. DE LABRIOLA AND V. DEULOFEU, J. Org. Chem., 12 (1947) 726-730.
- 5 P. BRIGLE, M. MUHLSCHLEGL, AND R. SCHINLE, Ber. Disch. Chem. Ges., 64 (1931) 2921-2934.
- 6 J. O. DEFERRARI AND B. MATSUHIRO, J. Org. Chem., 31 (1966) 905-908.
- 7 S. J. ANGYAL AND R. LE FUR, Carbohydr. Res., 126 (1984) 15-26.
- 8 S. J. ANGYAL, R. LE FUR, AND D. GAGNAIRE, Carbohydr. Res., 23 (1972) 121-134.
- 9 W. W. BINKLEY, D. R. DIEHL AND R. W. BINKLEY, Carbohydr. Res., 18 (1971) 459-465.
- 10 A. M. SELDES, E. G. GROS, I. M. E. THIEL, AND J. O. DEFERRARI, Carbohydr. Res., 39 (1975) 11-17.
- 11 A. G. MARTELLI, N. B. D'ACCORSO, AND I. M. E. THIEL, An. Asoc. Quim. Argent., 75 (1987) 117-124.